. .

216 parametersAtomic scattering factors
$$w = 1/[\sigma^2(F_o^2) + (0.1214P)^2$$
from International Tables $+ 0.0307P]$ from Crystallography (1992,where  $P = (F_o^2 + 2F_c^2)/3$ Vol. C, Tables 4.2.6.8 and $(\Delta/\sigma)_{max} = -0.094$ 6.1.1.4) $\Delta \rho_{max} = 0.290$  e Å<sup>-3</sup>Absolute configuration: $\Delta \rho_{min} = -0.237$  e Å<sup>-3</sup>Flack (1983)

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å<sup>2</sup>)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

|     | x            | у           | Z            | $U_{eq}$    |
|-----|--------------|-------------|--------------|-------------|
| S   | 0.92832 (10) | 0.51629 (9) | 0.86263 (3)  | 0.0538 (3)  |
| 01  | 0.8354 (5)   | 0.6597 (3)  | 0.88601 (11) | 0.0825 (9)  |
| 02  | 0.8600 (2)   | 0.3954 (3)  | 0.70150 (8)  | 0.0474 (5)  |
| 03  | 0.6470 (3)   | 0.5830 (3)  | 0.68440 (9)  | 0.0577 (6)  |
| CI  | 0.8600 (4)   | 0.3407 (4)  | 0.90273 (12) | 0.0455 (6)  |
| C2  | 0.7631 (4)   | 0.3635 (4)  | 0.95041 (13) | 0.0546 (7)  |
| C3  | 0.7202 (5)   | 0.2284 (5)  | 0.98276 (13) | 0.0588 (8)  |
| C4  | 0.7738 (4)   | 0.0711 (4)  | 0.96915 (13) | 0.0565 (8)  |
| C5  | 0.8691 (5)   | 0.0501 (4)  | 0.92021 (14) | 0.0548 (7)  |
| C6  | 0.9125 (4)   | 0.1838 (4)  | 0.88756 (12) | 0.0494 (7)  |
| C7  | 0.7331 (7)   | -0.0760 (6) | 1.00576 (2)  | 0.0862 (13) |
| C8  | 0.8320 (3)   | 0.4630 (3)  | 0.79788 (11) | 0.0420 (6)  |
| C9  | 0.6446 (4)   | 0.4595 (4)  | 0.79664 (12) | 0.0508 (7)  |
| C10 | 0.5887 (4)   | 0.3595 (4)  | 0.74638 (14) | 0.0522 (7)  |
| C11 | 0.6811 (4)   | 0.4146 (4)  | 0.69368 (12) | 0.0449 (6)  |
| C12 | 0.9264 (3)   | 0.4328 (3)  | 0.75319(11)  | 0.0407 (6)  |
| C13 | 0.6377 (5)   | 0.3249 (4)  | 0.6392 (2)   | 0.0625 (8)  |
| C14 | 0.6653 (6)   | 0.4585 (7)  | 0.5951 (2)   | 0.0785 (11) |
| C15 | 0.6204 (6)   | 0.6126 (5)  | 0.6258 (2)   | 0.0750 (11) |
| C16 | 1.11562 (4)  | 0.4248 (4)  | 0.74984 (15) | 0.0585 (8)  |
|     |              |             |              |             |

#### Table 2. Selected geometric parameters (Å, °)

| S-01      | 1.486 (3)  | C8—C9       | 1.493 (4) |  |
|-----------|------------|-------------|-----------|--|
| SC8       | 1.773 (3)  | C9-C10      | 1.511 (5) |  |
| S-C1      | 1.798 (3)  | C10-C11     | 1.520 (4) |  |
| C1C2      | 1.383 (5)  | C11—O3      | 1.410 (4) |  |
| C1C6      | 1.387 (4)  | C11—O2      | 1.446 (4) |  |
| C2-C3     | 1.382 (5)  | C11—C13     | 1.525 (5) |  |
| C3C4      | 1.383 (5)  | O2—C12      | 1.371 (3) |  |
| C4C5      | 1.399 (5)  | C12—C16     | 1.512 (4) |  |
| C4—C7     | 1.512 (5)  | C13-C14     | 1.524 (6) |  |
| C5—C6     | 1.378 (4)  | C14C15      | 1.490 (6) |  |
| C8-C12    | 1.324 (4)  | C15—O3      | 1.429 (4) |  |
| O1—S—C8   | 107.4 (2)  | C8-C9-C10   | 108.7 (2) |  |
| 01—S—C1   | 105.7 (2)  | C9-C10-C11  | 110.5 (2) |  |
| C8SC1     | 97.79 (12) | O3-C11O2    | 108.3 (2) |  |
| C2C1C6    | 120.3 (3)  | O3—C11—C10  | 108.7 (3) |  |
| C2-C1S    | 119.8 (2)  | O2—C11—C10  | 109.9 (2) |  |
| C6C1S     | 119.8 (2)  | O3-C11-C13  | 106.6 (2) |  |
| C3C2C1    | 119.2 (3)  | O2-C11-C13  | 106.3 (3) |  |
| C2-C3-C4  | 121.7 (3)  | C10-C11-C13 | 116.7 (3) |  |
| C3-C4-C5  | 118.3 (3)  | C12-02-C11  | 118.1 (2) |  |
| C3-C4-C7  | 121.8 (3)  | C8-C12-O2   | 122.7 (2) |  |
| C5-C4-C7  | 119.9 (3)  | C8-C12-C16  | 128.1 (3) |  |
| C6-C5-C4  | 120.5 (3)  | O2-C12-C16  | 109.2 (2) |  |
| C5-C6-C1  | 120.0 (3)  | C14C13C11   | 102.2 (3) |  |
| C12-C8-C9 | 123.3 (3)  | C15-C14-C13 | 103.0 (3) |  |
| C12-C8-S  | 119.7 (2)  | O3-C15-C14  | 107.5 (3) |  |
| C9—C8—S   | 117.0 (2)  | C11—O3—C15  | 110.1 (3) |  |
|           |            |             |           |  |

The determination of the absolute configuration was possible from the known S configuration of the sulfoxide group in the starting heterodiene; using the method described by Flack (1983), the absolute configuration was confirmed by the calculations (*SHELXL93*; Sheldrick, 1993). H atoms were refined as rigid groups using the *AFIX* card of the *SHELXL93* program.

Data collection: DIF4 (Stoe & Cie, 1988a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe & Cie, 1988b). Pro-

gram(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990) option *TREF*. Program(s) used to refine structure: *SHELXL*93. Molecular graphics: *ORTEP* (Johnson, 1965).

The authors thank Professor M. Leblanc, University of Maine, for helpful discussions.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: PA1118). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### References

- Boger, D. L. & Weinzed, S. M. (1987). Hetero-Diels-Alder Methodology in Organic Synthesis. New York: Academic Press.
- Bonfand, E., Gosselin, P. & Maignan, C. (1992). Tetrahedron Lett. 33, 2347-2348.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1990). SHELXS86. Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). *REDU4. Data Reduction Program.* Version 6.2. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1995). C51, 94-96

The Diels-Alder Adduct of an Enantiopure 2-Sulfinyldiene and Maleimide: (1*S*,2*R*,3*S*,*SR*)-3-Methyl-5-*p*-toluenesulfinylcyclohex-4-en-1,2dicarboximide

P. GOSSELIN, E. BONFAND AND C. MAIGNAN

Laboratoire de Synthèse Organique - URA 482 Faculté des Sciences, Université du Maine, 72017 Le Mans CEDEX, France

R. RETOUX

Laboratoire des Fluorures - URA 449 Faculté des Sciences, Université du Maine, 72017 Le Mans CEDEX, France

(Received 23 March 1994; accepted 24 June 1994)

#### Abstract

The title compound,  $C_{16}H_{17}NO_3S$ , is the single adduct obtained by cycloaddition of (E)-(+)-(R)-2-*p*-toluenesulfinyl-1,3-pentadiene with maleimide. The ab-

solute configuration of the stereocentres is established and some mechanistic aspects are deduced.

## Comment

Control over asymmetric induction in Diels-Alder cycloadditions is a matter of continuing interest (Taschner, 1989). We reported recently that enantiopure 2-sulfinyldiene may readily be synthesized from (SR)vinylsulfoxide (Bonfand, Gosselin & Maignan, 1993). We then examined the cycloaddition of (E)-(+)-(R)-2*p*-toluenesulfinyl-1,3-pentadiene in order to study both endo/exo and diastereofacial selectivities. This diene was reacted with maleimide in ether at room temperature and the reaction was complete after 10 h. Only one of four possible stereoisomers, (I), was isolated.



The configuration of the three contiguous stereocentres was shown to be 1S,2R,3S (C12, C11 and C10, respectively) by single-crystal X-ray diffraction. The title compound results from an exclusive endo approach by a completely diastereofacial selective route, *i.e.* from the less hindered side of the diene, which is also the most nucleophilic. This indicates an s-trans conformation of the S=O and C=C bonds in the diene, at least in the transition state.



Fig. 1 ORTEP plot of C16H17NO3S. For the sake of clarity the displacement parameters of the H atoms have been divided by ten. Displacement ellipsoids are plotted at the 50% probability level.

## **Experimental**

Recrystallization from CH2Cl2/Et2O afforded the title compound as colourless platelets and a parallelepipedic crystal

was chosen for X-ray analysis. Its quality was tested using Laue photographs.

## Crystal data

| $C_{16}H_{17}NO_3S$             | Mo $K\alpha$ radiation                       |
|---------------------------------|----------------------------------------------|
| $M_r = 303.37$                  | $\lambda = 0.71069 \text{ Å}$                |
| Orthorhombic                    | Cell parameters from 36                      |
| $P2_{1}2_{1}2_{1}$              | reflections                                  |
| a = 8.5143 (7) Å                | $\theta = 12.75 - 15.7^{\circ}$              |
| <i>b</i> = 11.8171 (6) Å        | $\mu = 0.217 \text{ mm}^{-1}$                |
| c = 14.7520 (9) Å               | T = 293 (2) K                                |
| V = 1484.3 (2) Å <sup>3</sup>   | Parallelepiped                               |
| Z = 4                           | $0.608 \times 0.532 \times 0.456 \text{ mm}$ |
| $D_x = 1.358 \text{ Mg m}^{-3}$ | Colourless                                   |
|                                 |                                              |

frequency: 60 min intensity variation: 1.3%

## Data collection

| Stoe Siemens AED-2 dif-      | $R_{\rm int} = 0.0342$          |
|------------------------------|---------------------------------|
| fractometer                  | $\theta_{\rm max} = 30^{\circ}$ |
| $\omega$ -2 $\theta$ scans   | $h = -11 \rightarrow 11$        |
| Absorption correction:       | $k = -16 \rightarrow 16$        |
| none                         | $l = -20 \rightarrow 20$        |
| 4922 measured reflections    | 3 standard reflections          |
| 4328 independent reflections | frequency: 60 min               |
| 3727 observed reflections    | intensity variation:            |
| $[I > 2\sigma(I)]$           |                                 |

#### Refinement

N 01

02 03 C1 C2 C3 C4 C5

C6

C7 C8

C9 C10 C11 C12

C13 C14

C15

C16

| $\Delta \rho_{\rm max} = 0.248 \ {\rm e} \ {\rm A}^{-3}$    |
|-------------------------------------------------------------|
| $\Delta \rho_{\rm min} = -0.219 \ {\rm e} \ {\rm \AA}^{-3}$ |
| Extinction correction: none                                 |
| Atomic scattering factors                                   |
| from International Tables                                   |
| for Crystallography (1992,                                  |
| Vol. C, Tables 4.2.6.8 and                                  |
| 6.1.1.4)                                                    |
| Absolute configuration:                                     |
| Flack (1983)                                                |
|                                                             |

## Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å<sup>2</sup>)

| $U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$ |              |              |              |
|----------------------------------------------------------------------------------------|--------------|--------------|--------------|
| x                                                                                      | у            | z            | $U_{eq}$     |
| 0.14421 (5)                                                                            | 0.91874 (4)  | 0.81601 (3)  | 0.04102 (12) |
| 0.3896 (2)                                                                             | 0.88709 (14) | 0.53164 (10) | 0.0444 (4)   |
| 0.2347 (2)                                                                             | 0.97751 (14) | 0.88926 (9)  | 0.0568 (4)   |
| 0.5133 (3)                                                                             | 1.02400 (13) | 0.61450 (13) | 0.0700 (5)   |
| 0.2948 (3)                                                                             | 0.7207 (2)   | 0.47557 (12) | 0.0765 (6)   |
| 0.1252 (2)                                                                             | 1.01846 (13) | 0.72563 (10) | 0.0356 (3)   |
| 0.1936 (2)                                                                             | 1.1233 (2)   | 0.73248 (13) | 0.0414 (4)   |
| 0.1756 (2)                                                                             | 1.2012 (2)   | 0.6635 (2)   | 0.0493 (4)   |
| 0.0905 (3)                                                                             | 1.1753 (2)   | 0.58651 (13) | 0.0581 (6)   |
| 0.0203 (5)                                                                             | 1.0698 (3)   | 0.5822 (2)   | 0.0845 (10)  |
| 0.0356 (4)                                                                             | 0.9913 (2)   | 0.6512 (2)   | 0.0670(7)    |
| 0.0754 (5)                                                                             | 1.2613 (3)   | 0.5107 (2)   | 0.0887 (11)  |
| 0.2774 (2)                                                                             | 0.82421 (13) | 0.76250 (10) | 0.0325 (3)   |
| 0.2239 (2)                                                                             | 0.72916 (14) | 0.72617 (12) | 0.0374 (3)   |
| 0.3391 (2)                                                                             | 0.65245 (12) | 0.67886 (11) | 0.0349 (3)   |
| 0.4468 (2)                                                                             | 0.72360 (13) | 0.61668 (10) | 0.0308 (3)   |
| 0.5161 (2)                                                                             | 0.82832 (14) | 0.66435 (9)  | 0.0314 (3)   |
| 0.4487 (2)                                                                             | 0.85171 (15) | 0.75922 (11) | 0.0363 (3)   |
| 0.2588 (3)                                                                             | 0.5523 (2)   | 0.6320 (2)   | 0.0548 (5)   |
| 0.3651 (2)                                                                             | 0.7725 (2)   | 0.53340 (11) | 0.0422 (4)   |
| 0.4769 (2)                                                                             | 0.9272 (2)   | 0.60267 (11) | 0.0408 (3)   |

Table 2. Selected geometric parameters (Å, °)

|                | 0           | 1           | , ,         |
|----------------|-------------|-------------|-------------|
| S—01           | 1.498 (2)   | C9-C10+     | 1.507 (2)   |
| SC8            | 1.7766 (15) | C10-C14     | 1.532 (3)   |
| SC1            | 1.787 (2)   | C10-C11     | 1.545 (2)   |
| C1—C2          | 1.373 (2)   | CI1C15      | 1.525 (2)   |
| C1C6           | 1.375 (3)   | C11—C12     | 1.541 (2)   |
| C2C3           | 1.380 (3)   | C12C16      | 1.518 (2)   |
| C3C4           | 1.382 (3)   | C12C13      | 1.538 (2)   |
| C4—C5          | 1.384 (5)   | C15-03      | 1.209 (2)   |
| C4C7           | 1.517 (3)   | C15—N       | 1.370 (3)   |
| C5C6           | 1.383 (4).  | C16—O2      | 1.197 (3)   |
| C8C9           | 1.325 (2)   | C16N        | 1.370 (2)   |
| C8C13          | 1.495 (2)   |             |             |
| O1SC8          | 106.49 (9)  | C9-C10-C14  | 112.5 (2)   |
| 01 <b>S</b> C1 | 106.21 (8)  | C9-C10-C11  | 109.49 (12) |
| C8—S—C1        | 98.10 (7)   | C14-C10-C11 | 114.68 (15) |
| C2C1C6         | 120.3 (2)   | C15-C11-C12 | 103.77 (13) |
| C2C1S          | 120.13 (13) | C15-C11-C10 | 114.44 (14) |
| C6C1S          | 119.5 (2)   | C12C11C10   | 113.17 (11) |
| C1C2C3         | 120.0 (2)   | C16-C12-C13 | 108.95 (14) |
| C4—C3—C2       | 121.1 (2)   | C16-C12-C11 | 105.10 (12) |
| C3C4C5         | 117.7 (2)   | C13-C12-C11 | 114.61 (12) |
| <b>C3C4</b> C7 | 120.1 (3)   | C8C13C12    | 110.78 (13) |
| C5C4C7         | 122.2 (3)   | O3C15N      | 124.2 (2)   |
| C6C5C4         | 121.9 (2)   | O3C15C11    | 127.0 (2)   |
| C1C6C5         | 118.9 (2)   | NC15C11     | 108.68 (15) |
| C9C8C13        | 120.42 (14) | 02C16N      | 125.6 (2)   |
| C9—C8—S        | 119.56 (13) | O2C16C12    | 126.2 (2)   |
| C13-C8-S       | 120.02 (12) | NC16C12     | 108.1 (2)   |
| C8-C9-C10      | 118.26 (14) | C16NC15     | 114.23 (15) |
|                |             |             |             |

The determination of the absolute configuration was possible from the known R configuration of the sulfoxide group in the starting diene; using the method described by Flack (1983), tha absolute configuration was confirmed by the calculations [*SHELXL93* (Sheldrick, 1993) option applied on non-centrosymmetric space groups]. H atoms were refined as rigid groups using the *AFIX* card of the *SHELXS*93 program.

Data collection: *DIF4* (Stoe & Cie, 1988a). Cell refinement: *DIF4*. Data reduction: *REDU4* (Stoe & Cie, 1988b). Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1990), option *TREF*. Program(s) used to refine structure: *SHELXL93*. Molecular graphics: *ORTEP* (Johnson, 1965).

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: PA1119). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

### References

- Bonfand, E., Gosselin, P. & Maignan, C. (1993). Tetrahedron Asymmetry, 4, 1667-1676.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Taschner, M. J. (1989). Asymmetric Diels-Alder Reaction. Organic Synthesis Theory and Application, edited by T. Hudlicky, pp. 1– 101. Greenwich, CT: Jai Press.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1995). C51, 96-98

# 5-Ethyl-2'-deoxycytidine, C<sub>11</sub>H<sub>17</sub>N<sub>3</sub>O<sub>4</sub>

Scott Napper

Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada S7N 0W0

Allan L. Stuart, Sashi V. P. Kumar and V. Sagar Gupta

<sup>(47)</sup> (12) Department of Veterinary Physiological Sciences,
 <sup>(47)</sup> (13) University of Saskatchewan, Saskatoon,
 <sup>(44)</sup> Canada S7N 0W0

LOUIS T. J. DELBAERE

Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada S7N 0W0

(Received 18 October 1993; accepted 18 May 1994)

## Abstract

The deoxyribose ring in the title compound adopts the twist conformation  $({}_{3}^{2}T)$  with a glycosyl torsion angle of 231.0 (6)°. The pseudo-rotation parameters are  $P = 180.29 (5)^{\circ}$  and  $\tau_{m} = 38.3 (5)^{\circ}$ . The exocyclic side chain at C5' has the t conformation  $[\gamma = 174.8 (11)^{\circ}]$ . The ethyl group at C5 is on the same side of the pyrimidine plane as the O4' atom of the furanose ring.

## Comment

5-Ethyl-2'-deoxyuridine (EtdUrd) has been shown to be a relatively potent inhibitor of herpes simplex virus (types 1 and 2) replication (De Clerq & Rosenwirth, 1985; De Clerq & Shugar, 1975; Schinazi, Scott, Peters, Rice & Nahmias, 1985). 5-Ethyl-2'-deoxycytidine (EtdCyd) was prepared as a potential antiviral agent, based on the potency of EtdUrd (De Clerq & Shugar, 1975; Kulikowski & Shugar, 1974).



A perspective ORTEPII (Johnson, 1976) drawing of the molecule is shown in Fig. 1. The bond lengths and angles of EtdCyd are in the range reported for other 2'-deoxycytidine nucleosides (Young & Wilson, 1975; Kashino, Negishi & Hayatsu, 1988; Low, Tollin, Howie & Wilson, 1988; Sato, 1988; Silver-